%0 Journal Article %T Accelerating denoising diffusion probabilistic model via truncated inverse processes for medical image segmentation. %A Guo X %A Xiang Y %A Yang Y %A Ye C %A Yu Y %A Ma T %J Comput Biol Med %V 180 %N 0 %D 2024 Sep 2 %M 39096612 %F 6.698 %R 10.1016/j.compbiomed.2024.108933 %X Medical image segmentation demands precise accuracy and the capability to assess segmentation uncertainty for informed clinical decision-making. Denoising Diffusion Probability Models (DDPMs), with their advancements in image generation, can treat segmentation as a conditional generation task, providing accurate segmentation and uncertainty estimation. However, current DDPMs used in medical image segmentation suffer from low inference efficiency and prediction errors caused by excessive noise at the end of the forward process. To address this issue, we propose an accelerated denoising diffusion probabilistic model via truncated inverse processes (ADDPM) that is specifically designed for medical image segmentation. The inverse process of ADDPM starts from a non-Gaussian distribution and terminates early once a prediction with relatively low noise is obtained after multiple iterations of denoising. We employ a separate powerful segmentation network to obtain pre-segmentation and construct the non-Gaussian distribution of the segmentation based on the forward diffusion rule. By further adopting a separate denoising network, the final segmentation can be obtained with just one denoising step from the predictions with low noise. ADDPM greatly reduces the number of denoising steps to approximately one-tenth of that in vanilla DDPMs. Our experiments on four segmentation tasks demonstrate that ADDPM outperforms both vanilla DDPMs and existing representative accelerating DDPMs methods. Moreover, ADDPM can be easily integrated with existing advanced segmentation models to improve segmentation performance and provide uncertainty estimation. Implementation code: https://github.com/Guoxt/ADDPM.