%0 Journal Article %T Formulations of poly(vinyl alcohol) functionalized silk fibroin nanoparticles for the oral delivery of zwitterionic ciprofloxacin. %A Thi Phuong Thao N %A Nguyen NY %A Co VB %A Thanh LHV %A Nguyen MQ %A Pan-On S %A Pham DT %J PLoS One %V 19 %N 8 %D 2024 %M 39088490 %F 3.752 %R 10.1371/journal.pone.0306140 %X Fibroin nanoparticles (FNP) have been employed in numerous biomedical applications. However, limited research has focused on the oral delivery of FNP and in-depth molecular interactions between the encapsulated drug and FNP. Therefore, this work developed the FNP, functionalized with poly(vinyl alcohol) (PVA), to orally deliver the zwitterionic ciprofloxacin, focused on the molecular interactions. The particles were formulated using both desolvation (the drug precipitated during the particles formulation) and adsorption (the drug adsorbed on the particles surfaces) methods. The optimal formula possessed a size of ~630 nm with narrow size distribution (measured by DLS method), spherical shape (determined by SEM), and moderate drug loading (confirmed by FT-IR, XRD, and DSC techniques) of ~50% for the desolvation method and ~43% for the adsorption method. More than 80% of the drug molecules resided on the particle surfaces, mainly via electrostatic forces with fibroin. The drug was physically adsorbed onto FNP, which followed Langmuir model and pseudo second-order kinetics. In the in-vitro simulated gastric condition at pH 1.2, the ciprofloxacin bound strongly with FNP via electrostatic forces, thus hindering the drug release (< 40%). Contrastingly, in the simulated intestinal condition at pH 6.8, the particles could control the drug release rates dependent on the PVA amount, with up to ~100% drug release. Lastly, the particles possessed adequate antibacterial activities on Bacillus subtilis, Escherichia coli, and Salmonella enterica, with MIC of 128, 8, and 32 μg/mL, respectively. In summary, the FNP and PVA functionalized FNP could be a potential oral delivery system for zwitterionic drugs.