%0 Journal Article %T Effects of Different Exercise Intensities on the Rat Model of Heart Failure. %A Zhang Y %A Zhao Y %A Song R %A Tai W %J Int Heart J %V 65 %N 4 %D 2024 %M 39085110 %F 1.823 %R 10.1536/ihj.24-154 %X Heart failure (HF) is a clinical syndrome caused by the progression of various cardiac diseases to severe stages, and exercise training plays a positive role in the development of HF. This study aimed to investigate the impact of different intensities of exercise training on HF rats.In this study, we established two HF rat models by intraperitoneal injection of isoproterenol at 2.5 mg/kg/day and abdominal aortic coarctation. After exercise training for 4 weeks, the heart weight/body weight ratio and echocardiography results were measured. Moreover, the regulatory effect of different exercise intensities on myocardial function in HF model rats was verified using tissue staining, western blotting, and reagent kits.Exercise training had a bidirectional adjust effect on HF. A running training program of 20 minutes/time had the most significant effect on improving myocardial function in HF rats, whereas exercise intensity of 40 minutes/time or 50 minutes/time did not significantly improve myocardial function in HF rats. Moreover, exercise intensities of 20 minutes/time and 30 minutes/time could reduce the expression levels of the HF markers NT-proBNP and BNP in rats, but the effect was more significant at a duration of 20 minutes/time. We also found that compared with other exercise intensities, 20 minutes/time exercise intensity could significantly improve myocardial fibrosis, promote cardiomyocyte autophagy, and reduce apoptosis in combating HF.Furthermore, an exercise intensity of 20 minutes/time can significantly ameliorate the progression of HF. However, the degree of significance of increasing exercise intensity in improving HF progression is weakened or has no significant effect.