%0 Journal Article %T Exonuclease III/Cas12a Cascade Amplification Strategy and Smartphone-Based Portable Fluorescence Detector to Repurpose the Commercial AFP Strip for the POCT of Multiple RNAs. %A Peng X %A Mei X %A Liu X %A Zhang G %A Li Y %J Anal Chem %V 96 %N 32 %D 2024 Aug 13 %M 39082193 %F 8.008 %R 10.1021/acs.analchem.4c02366 %X Point of care testing (POCT) of nucleic acid (NA) contributes to the timely disease diagnosis, like bacteria and virus screening in households or resource-constrained areas, but its development has always been stagnant. Herein, we proposed an exonuclease III cascaded with CRISPR/Cas12a (Exo-III/Cas12a) amplification strategy and constructed a smartphone-based portable fluorescence detector (SPFD) to repurpose the commercial alpha-fetoprotein (AFP) strip for the ultrasensitive and hand-held detection of NA samples. In detail, the target-initiated-Exo-III/Cas12a strategy realizes the signal amplification and liberates AFP from magnetic beads through the trans-cleavages of activated Cas12a toward the AFP aptamer. After magnetic separation and migration, the fluorescence signals of the test (FT) and control (FC) lines on the AFP strip were digitally output by the SPFD, and the FT/FC was employed for the quantitative analysis to minimize external disturbances and improve accuracy. We experimentally assessed the universe applicability of the proposed NA-POCT platform toward miRNA-155, 16S rRNA of Staphylococcus aureus, and ORF1a/b RNA of Covid-19 pseudovirus, achieving favorable detection limits of 42 aM, 18 CFU/mL, and 87 copies/μL, respectively. Moreover, its simplicity, universality, and admirable detection performance demonstrate a great potential in the aspect of rapidly transforming the existing POCT devices for multiple new applications at the time of need.