%0 Journal Article %T HIV-1 genotypic resistance testing using single molecule real-time sequencing. %A Raymond S %A Jeanne N %A Vellas C %A Nicot F %A Saune K %A Ranger N %A Latour J %A Carcenac R %A Harter A %A Delobel P %A Izopet J %J J Clin Virol %V 174 %N 0 %D 2024 Oct 24 %M 39068746 %F 14.481 %R 10.1016/j.jcv.2024.105717 %X BACKGROUND: HIV-1 resistance testing is recommended in clinical management and next-generation sequencing (NGS) methods are now available in many virology laboratories.
OBJECTIVE: To evaluate the diagnostic performance of Long-Read Single Molecule Real-time (SMRT) sequencing (Sequel, PacBio) for HIV-1 polymerase genotyping.
METHODS: 111 prospective clinical samples (83 plasma and 28 leukocyte-enriched blood fraction) were analyzed for routine HIV-1 resistance genotyping using Sanger sequencing, Vela NGS, and SMRT sequencing. We developed a SMRT sequencing protocol and a bio-informatics pipeline to infer antiretroviral resistance on both haplotype and variant calling approaches.
RESULTS: The polymerase was successfully sequenced by the three platforms in 98 % of plasma RNA samples for viral loads above 4 log copies/mL. The success rate decreased to 83 % using Sanger or Vela sequencing and to 67 % using SMRT sequencing for viral loads of 3 to 4 log copies/mL. Sensitivities of 50 %, 54 % and 61 % were obtained using SMRT, Vela, and Sanger sequencing, respectively, in cellular DNA from patients with prolonged undetectable plasma HIV-1 RNA. Ninety-eight percent of resistance-associated mutations (RAMs) identified with Sanger sequencing were detected using SMRT sequencing. Furthermore, 91 % of RAMs (> 5 % threshold) identified with Vela NGS were detected using SMRT sequencing. RAM quantification using Vela and SMRT sequencing was well correlated (Spearman correlation ρ = 0.82; P < 0.0001).
CONCLUSIONS: SMRT sequencing of the full-length HIV-1 polymerase appeared performant for characterizing HIV-1 genotypic resistance on both RNA and DNA clinical samples. Long-read sequencing is a new tool for mutation haplotyping and resistance analysis.