%0 Journal Article %T Electroacupuncture ameliorates blood-brain barrier disruption after ischemic stroke through histone acetylation regulation at the matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 2 genes. %A Yonglin C %A Ling O %A Lingling M %A Bufan WU %A Rou P %A Sitong L %A Dan H %A Yaling W %A Xinyue J %A Shengfeng LU %A Shuping FU %J J Tradit Chin Med %V 44 %N 4 %D 2024 Aug %M 39066534 %F 2.547 %R 10.19852/j.cnki.jtcm.20240610.004 %X OBJECTIVE: To explore whether the regulation of matrix metalloproteinase 9 (MMP-9)/ tissue inhibitors of MMPs (TIMPs) gene expression through histone acetylation is a possible mechanism by which electroacupuncture (EA) protects blood-brain barrier (BBB) integrity in a middle cerebral artery occlusion (MCAO) rat model.
METHODS: Male Sprague-Dawley rats were divided into four groups: the sham group, the MCAO group, the MCAO + EA (MEA) group, and the MCAO + EA + HAT inhibitor (HATi) group. The MCAO model was generated by blocking the middle cerebral artery. EA was applied to Baihui (GV20). Samples were collected 1 or 3 d after reperfusion. Neurological function scores and Evans blue extravasation were employed to evaluate the poststroke injury. The effect of EA on MMP-9/TIMPs gene expression was assessed by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and chromatin immunoprecipitation (ChIP).
RESULTS: Our results showed that EA treatment prominently improved neurological function and ameliorated BBB disruption. The RT-qPCR assay showed that EA reduced the expression of MMP-9 and promoted TIMP-2 mRNA expression, but HATi reversed these effects of EA. In addition, ChIP results revealed that EA decreased the enrichment of H3K9ace/H3K27ace at MMP-9 promoters and notably stimulated the recruitment of H3K9ace/H3K27ace at TIMP-2 promoter.
CONCLUSIONS: EA treatment at Baihui (GV20) regulates the transcription of MMP-9 and TIMP-2 through histone acetylation modification in the acute stage of stroke, which preserves the structural integrity of the BBB in MCAO rats. These findings suggested that the histone acetylation-mediated transcriptional activity of target genes may be a crucial mechanism of EA treatment in stroke.