%0 Journal Article %T A New Tailored Nanodroplet Carrier of Astaxanthin Can Improve Its Pharmacokinetic Profile and Antioxidant and Anti-Inflammatory Efficacies. %A Mishra K %A Khatib N %A Barasch D %A Kumar P %A Garti S %A Garti N %A Kakhlon O %J Int J Mol Sci %V 25 %N 14 %D 2024 Jul 18 %M 39063101 %F 6.208 %R 10.3390/ijms25147861 %X Astaxanthin (ATX) is a carotenoid nutraceutical with poor bioavailability due to its high lipophilicity. We tested a new tailored nanodroplet capable of solubilizing ATX in an oil-in-water micro-environment (LDS-ATX) for its capacity to improve the ATX pharmacokinetic profile and therapeutic efficacy. We used liquid chromatography tandem mass spectrometry (LC-MS/MS) to profile the pharmacokinetics of ATX and LDS-ATX, superoxide mutase (SOD) activity to determine their antioxidant capacity, protein carbonylation and lipid peroxidation to compare their basal and lipopolysaccharide (LPS)-induced oxidative damage, and ELISA-based detection of IL-2 and IFN-γ to determine their anti-inflammatory capacity. ATX and LDS-ATX corrected only LPS-induced SOD inhibition and oxidative damage. SOD activity was restored only by LDS-ATX in the liver and brain and by both ATX and LDS-ATX in muscle. While in the liver and muscle, LDS-ATX attenuated oxidative damage to proteins and lipids better than ATX; only oxidative damage to lipids was preferably corrected by LDS-ATX in the brain. IL-2 and IFN-γ pro-inflammatory response was corrected by LDS-ATX and not ATX in the liver and brain, but in muscle, the IL-2 response was not corrected and the IFN-γ response was mitigated by both. These results strongly suggest an organ-dependent improvement of ATX bioavailability and efficacy by the LDS-ATX nanoformulation.