%0 Journal Article %T Fast fabrication of "all-in-one" injectable hydrogels as antibiotic alternatives for enhanced bacterial inhibition and accelerating wound healing. %A Xin J %A Yang Z %A Zhang S %A Sun L %A Wang X %A Tang Y %A Xiao Y %A Huang H %A Li W %J J Nanobiotechnology %V 22 %N 1 %D 2024 Jul 26 %M 39061033 %F 9.429 %R 10.1186/s12951-024-02657-4 %X Skin wound infection has become a notable medical threat. Herein, the polysaccharide-based injectable hydrogels with multifunctionality were developed by a simple and fast gelation process not only to inactivate bacteria but also to accelerate bacteria-infected wound healing. Sodium nitroprusside (SNP) loaded PCN-224 nanoparticles were introduced into the polymer matrix formed by the dynamic and reversible coordinate bonds between Ag+ with carboxyl and amino or hydroxyl groups on carboxymethyl chitosan (CMCS), hydrogen bonds and electrostatic interactions in the polymer to fabricate SNP@PCN@Gel hydrogels. SNP@PCN@Gel displayed interconnected porous structure, excellent self-healing capacity, low cytotoxicity, good blood compatibility, and robust antibacterial activity. SNP@PCN@Gel could produce reactive oxygen species (ROS) and NO along with Fe2+, and showed long-term sustained release of Ag+, thereby effectively killing bacteria by synergistic photothermal (hyperthermia), photodynamic (ROS), chemodynamic (Fenton reaction), gas (NO) and ion (Ag+ and -NH3+ in CMCS) therapy. Remarkably, the hydrogels significantly promoted granulation tissue formation, reepithelization, collagen deposition and angiogenesis as well as wound contraction in bacteria-infected wound healing. Taken together, the strategy represented a general method to engineer the unprecedented photoactivatable "all-in-one" hydrogels with enhanced antibacterial activity and paved a new way for development of antibiotic alternatives and wound dressing.