%0 Journal Article %T In-silico study of the impact of system design parameters on microcalcification detection in wide-angle digital breast tomosynthesis. %A Duan X %A Huang H %A Zhao W %J J Med Imaging (Bellingham) %V 12 %N 0 %D 2025 Jan %M 39055550 暂无%R 10.1117/1.JMI.12.S1.S13002 %X UNASSIGNED: Accurate detection of microcalcifications ( μ Calcs ) is crucial for the early detection of breast cancer. Some clinical studies have indicated that digital breast tomosynthesis (DBT) systems with a wide angular range have inferior μ Calc detectability compared with those with a narrow angular range. This study aims to (1) provide guidance for optimizing wide-angle (WA) DBT for improving μ Calcs detectability and (2) prioritize key optimization factors.
UNASSIGNED: An in-silico DBT pipeline was constructed to evaluate μ Calc detectability of a WA DBT system under various imaging conditions: focal spot motion (FSM), angular dose distribution (ADS), detector pixel pitch, and detector electronic noise (EN). Images were simulated using a digital anthropomorphic breast phantom inserted with 120   μ m μ Calc clusters. Evaluation metrics included the signal-to-noise ratio (SNR) of the filtered channel observer and the area under the receiver operator curve (AUC) of multiple-reader multiple-case analysis.
UNASSIGNED: Results showed that FSM degraded μ Calcs sharpness and decreased the SNR and AUC by 5.2% and 1.8%, respectively. Non-uniform ADS increased the SNR by 62.8% and the AUC by 10.2% for filtered backprojection reconstruction with a typical clinical filter setting. When EN decreased from 2000 to 200 electrons, the SNR and AUC increased by 21.6% and 5.0%, respectively. Decreasing the detector pixel pitch from 85 to 50    μ m improved the SNR and AUC by 55.6% and 7.5%, respectively. The combined improvement of a 50   μ m pixel pitch and EN200 was 89.2% in the SNR and 12.8% in the AUC.
UNASSIGNED: Based on the magnitude of impact, the priority for enhancing μ Calc detectability in WA DBT is as follows: (1) utilizing detectors with a small pixel pitch and low EN level, (2) allocating a higher dose to central projections, and (3) reducing FSM. The results from this study can potentially provide guidance for DBT system optimization in the future.