%0 Journal Article %T RNA modification Regulators' Co-Expression Score (RMRCoeS) predicts biochemical recurrence and therapy response in prostate cancer: A multi-omics and experimental validation study. %A Cai Z %A Jiang Z %A Li S %A Mo S %A Wang S %A Liang M %A Tan X %A Zhong W %A Zhang L %A Deng J %A Zhong C %A Lu J %J Int Immunopharmacol %V 139 %N 0 %D 2024 Sep 30 %M 39053228 %F 5.714 %R 10.1016/j.intimp.2024.112723 %X BACKGROUND: Owing to the heterogeneity of prostate cancer (PCa), the clinical indicators traditionally fall short of meeting the requirements for personalized medicine. The realm of RNA modification has emerged as an increasingly relevant domain, shedding light on its pivotal role in tumor heterogeneity. However, the specific contributions of RNA modification regulators within the context of PCa remain largely unexplored.
METHODS: In this study, we undertook a literature review to summarize the common 8 types of RNA modifications (ac4c, AI, APA, m1A, m5c, m6A, m7G, Ψ) encompassing a total of 84 regulators. Moreover, we integrated multi-center cohorts with Ridge regression to develop the Regulators' Co-Expression Score (RMRCoeS). Then we assessed the role of RMRCoeS in several clinical aspects such as biochemical recurrence (BCR), responses to chemotherapy, androgen receptor signaling inhibitor (ARSI) therapy and immunotherapy in PCa. Finally, we validated the cancer-promoting performance of five hub genes through immunohistochemistry and in vitro assays.
RESULTS: Within the mutation landscape of RNA modification regulators, we observed a relatively low overall mutation rate. Remarkably, RMRCoeS, comprising 81 RNA modification regulators, exhibited a notable capability for accurately predicting the prognosis and therapeutic responses in PCa patients subjected to BCR, chemotherapy, ARSI therapy, and immunotherapy. A high RMRCoeS was indicative of a poor prognosis and unfavorable therapy responses. Functional enrichment analysis unveiled that RMRCoeS may exert its influence on PCa progression through various metabolic pathways. Furthermore, a higher RMRCoeS showed a positive correlation with elevated CNV mutations. Lastly, we validated the oncogene effects of CPSF4, WBSCR22, RPUSD3, TRMT61A, and NSUN5-five hub regulators-within the context of PCa.
CONCLUSIONS: The function of different RNA modifications is interconnected. Comprising eight distinct RNA modifications' regulators, RMRCoeS exhibits multifaceted roles in various aspects of PCa, including disease progression, prognosis, and responses to multiple therapies. Furthermore, we provide the initial validation of the oncogene effect associated with WBSCR22, RPUSD3, TRMT61A and NSUN5 in PCa. Our findings offer novel insights into the significance of RNA modifications in PCa personalized medicine.