%0 Journal Article %T Reactive astrocytes promote tumor progression by up-regulating tumor protocadherin 1 expression in lung cancer brain metastasis. %A Tang M %A Liang K %A Duan W %A Xia S %A Shi D %A Li E %A Liu W %A Wang Q %J Biochem Biophys Res Commun %V 732 %N 0 %D 2024 Nov 5 %M 39047401 %F 3.322 %R 10.1016/j.bbrc.2024.150431 %X Brain metastasis (BM) is one of the main causes of death in patients with non-small cell lung carcinoma. The specific pathological processes of BM, which are inextricably linked to the brain tumor microenvironment, such as the abundance of astrocytes, lead to limited treatment options and poor prognosis. Reactive astrocytes are acquired in the BM; however, the underlying mechanisms remain unclear. This study aimed to explore the mechanisms by which astrocytes promote BM development. We determined the crucial role of reactive astrocytes in promoting the proliferation and migration of brain metastatic lung tumor cells by upregulating protocadherin 1 (PCDH1) expression in an in vitro co-culture model. The overexpression of PCDH1 was confirmed in clinical BM samples using immunohistochemical staining. Survival analysis indicated that high-PCDH1 expression was associated with poor survival in patients with lung adenocarcinoma. In vivo assays further showed that silence of PCDH1 effectively inhibited the tumor progression of brain metastases and prolonged the survival of animals. RNA sequencing has revealed that PCDH1 plays an important role in cell proliferation and adhesion. In conclusion, the present study revealed the promoting role of astrocytes in enhancing the aggressive phenotype of brain metastatic tumor cells by regulating the expression of PCDH1, which might be a biomarker for BM diagnosis and prognosis, suggesting the potential efficacy of targeting important astrocyte-tumor interactions in the treatment of patients with non-small cell lung carcinoma with BM.