%0 Journal Article %T Quantitative assessment of intertarget position variations based on 4D-CT and 4D-CBCT simulations in single-isocenter multitarget lung stereotactic body radiation therapy. %A Zhang S %A Guo C %A Xu J %A Qian P %A Guo J %A Liu T %A Wu Y %A Hong J %A Wang Q %A He X %A Sun L %J J Cancer Res Clin Oncol %V 150 %N 7 %D 2024 Jul 24 %M 39044013 %F 4.322 %R 10.1007/s00432-024-05836-w %X BACKGROUND: In single-isocenter multitarget stereotactic body radiotherapy (SBRT), geometric miss risks arise from uncertainties in intertarget position. However, its assessment is inadequate, and may be interfered by the reconstructed tumor position errors (RPEs) during simulated CT and cone beam CT (CBCT) acquisition. This study aimed to quantify intertarget position variations and assess factors influencing it.
METHODS: We analyzed data from 14 patients with 100 tumor pairs treated with single-isocenter SBRT. Intertarget position variation was measured using 4D-CT simulation to assess the intertarget position variations (ΔD) during routine treatment process. Additionally, a homologous 4D-CBCT simulation provided RPE-free comparison to determine the impact of RPEs, and isolating purely tumor motion induced ΔD to evaluate potential contributing factors.
RESULTS: The median ΔD was 4.3 mm (4D-CT) and 3.4 mm (4D-CBCT). Variations exceeding 5 mm and 10 mm were observed in 31.1% and 5.5% (4D-CT) and 20.4% and 3.4% (4D-CBCT) of fractions, respectively. RPEs necessitated an additional 1-2 mm safety margin. Intertarget distance and breathing amplitude variability showed weak correlations with variation (Rs = 0.33 and 0.31). The ΔD differed significantly by locations (upper vs. lower lobe and right vs. Left lung). Notably, left lung tumor pairs exhibited the highest risk.
CONCLUSIONS: This study provide a reliable way to assess intertarget position variation by using both 4D-CT and 4D-CBCT simulation. Consequently, single-isocenter SBRT for multiple lung tumors carries high risk of geometric miss. Tumor motion and RPE constitute a substantial portion of intertarget position variation, requiring correspondent strategies to minimize the intertarget uncertainties.