%0 Journal Article %T Monitoring of temperature rise in global nuclear power plant thermal discharge from 2013 to 2022. %A Wang L %A Li G %A Guo X %A Zhu J %A Sui C %A Dong X %J J Environ Manage %V 366 %N 0 %D 2024 Aug 17 %M 39025007 %F 8.91 %R 10.1016/j.jenvman.2024.121844 %X The development of nuclear power plants is progressing rapidly worldwide. However, there is currently a lack of dynamic monitoring of the thermal discharge temperature rise from these plants, making it unclear to governments where their nuclear power thermal discharges stand globally. We hypothesize that between 2013 and 2022, there are significant temporal and spatial differences in the thermal discharge temperature rise from nuclear power plants globally. Temporal differences are expected to reflect a country's nuclear power installed capacity and thermal discharge treatment capabilities, while spatial differences are related to the type of water bodies where nuclear power plants are located. To test these hypotheses, we utilized Landsat data to get the distribution range of thermal discharge and temperature rise levels ranging from 1 °C to 4 °C, and compared the temporal and spatial characteristics of temperature rise in different countries. The results indicate that: (1) Currently, China, the United States, and Canada rank among the top three globally in terms of the area experiencing temperature rise due to thermal discharge, which correlates with the total installed capacity of nuclear power in these countries. (2) Countries such as Russia, Finland, and Mexico exhibit larger areas with a 4 °C temperature rise level per unit installed capacity, with their thermal rise area per unit installed capacity (TRAUIC) exceeding the global average by more than 1.5 times. (3) The spatial dispersion trends of thermal discharges from nuclear power plants vary across different types of water bodies. For nuclear power plants located in bays, thermal discharges primarily disperse along the coast, while in open sea and lakes, thermal discharges tend to spread in a fan-shaped pattern. The findings of this study are crucial for understanding the efficiency of thermal discharge from nuclear power plants across different countries globally, assessing potential environmental risks during the operation of these plants, and promoting the safe and orderly development of nuclear power plants worldwide.