%0 Journal Article %T Identification of 6-Anilino Imidazo[4,5-c]pyridin-2-ones as Selective DNA-Dependent Protein Kinase Inhibitors and Their Application as Radiosensitizers. %A Hong CR %A Liew LP %A Wong WW %A Dickson BD %A Cheng G %A Shome A %A Airey R %A Jaiswal J %A Lipert B %A Jamieson SMF %A Wilson WR %A Hay MP %J J Med Chem %V 67 %N 14 %D 2024 Jul 25 %M 39007759 %F 8.039 %R 10.1021/acs.jmedchem.4c01120 %X The dominant role of non-homologous end-joining in the repair of radiation-induced double-strand breaks identifies DNA-dependent protein kinase (DNA-PK) as an excellent target for the development of radiosensitizers. We report the discovery of a new class of imidazo[4,5-c]pyridine-2-one DNA-PK inhibitors. Structure-activity studies culminated in the identification of 78 as a nM DNA-PK inhibitor with excellent selectivity for DNA-PK compared to related phosphoinositide 3-kinase (PI3K) and PI3K-like kinase (PIKK) families and the broader kinome, and displayed DNA-PK-dependent radiosensitization of HAP1 cells. Compound 78 demonstrated robust radiosensitization of a broad range of cancer cells in vitro, displayed high oral bioavailability, and sensitized colorectal carcinoma (HCT116/54C) and head and neck squamous cell carcinoma (UT-SCC-74B) tumor xenografts to radiation. Compound 78 also provided substantial tumor growth inhibition of HCT116/54C tumor xenografts in combination with radiation. Compound 78 represents a new, potent, and selective class of DNA-PK inhibitors with significant potential as radiosensitizers for cancer treatment.