%0 Journal Article %T Low-temperature subcritical water dechlorination composites of waste PVC/coal fly ash with powerful sensing activity for chemiluminescent detection of acetamiprid and imidacloprid. %A Xiu FR %A Bai X %A Qi Y %A Gao X %A Zhao M %J Sci Total Environ %V 948 %N 0 %D 2024 Oct 20 %M 39002593 %F 10.753 %R 10.1016/j.scitotenv.2024.174675 %X Pesticide residues in agricultural products are serious threat to people's health. Real-time monitoring of pesticides residues in the environment and agricultural products posed challenges to sustainable methods with high analytical performance for pesticide detection. Herein, waste PVC/coal fly ash (the mass ratio of PVC and coal fly ash was 4:1) was dechlorinated in subcritical water at low temperature to achieve nearly 100 % dechlorination of PVC and obtain carbon-based composite materials (CM-Fe/Al/Si-dPVC) with strong sening activity. For CM-Fe/Al/Si-dPVC, CFe bonding resulted in strong electron migration, and nano/μm SiO2 and Al2O3 doping in the layered polyene C matrix provided large specific surface area, and silicon hydroxyl created good heterogeneous catalytic interfaces. CM-Fe/Al/Si-dPVC could strongly trigger luminol chemiluminescence (CL) reaction and produce intense CL signals. Neonicotinoid pesticides (acetamiprid and imidacloprid) bonded with CM-Fe/Al/Si-dPVC through coordination chelation and hydrogen bonding, which shielded the catalytic active site and increased the Fermi level of system, thus quenching CL reaction. Inspired by these, a cheap CL assay was constructed for detecting neonicotinoids combinations of acetamiprid and imidacloprid (NICs). The detection limits of NICs were 0.7 ng/L. Satisfactory recoveries were obtained for real agricultural products and environmental samples. The results of life cycle evaluation (LCA) revealed that the strategy had significantly small global warming potential (GWP). This work presented a sustainable method with environmental benefits for the detection of neonicotinoids, and also opened up new way for the recycling of organic solid wastes.