%0 Journal Article %T Electrospun Silicon Dioxide/poly(vinylidene fluoride) Nanofibrous Membrane Comprising a Skin Multicore-Shell Nanostructure as a New High-Heat-Resistant Separator for Lithium-Ion Polymer Batteries. %A Kim YG %A Jeong BG %A Park BJ %A Kim H %A Lee MW %A Jo SM %J Polymers (Basel) %V 16 %N 13 %D 2024 Jun 26 %M 39000665 %F 4.967 %R 10.3390/polym16131810 %X Porous silicon dioxide (SiO2)/poly(vinylidene fluoride) (PVdF), SiO2/PVdF, and fibrous composite membranes were prepared by electrospinning a blend solution of a SiO2 sol-gel/PVdF. The nanofibers of the SiO2/PVdF (3/7 wt. ratio) blend comprised skin and nanofibrillar structures which were obtained from the SiO2 component. The thickness of the SiO2 skin layer comprising a thin skin layer could be readily tuned depending on the weight proportions of SiO2 and PVdF. The composite membrane exhibited a low thermal shrinkage of ~3% for 2 h at 200 °C. In the prototype cell comprising the composite membrane, the alternating current impedance increased rapidly at ~225 °C, and the open-circuit voltage steeply decreased at ~170 °C, almost becoming 0 V at ~180 °C. After being exposed at temperatures of >270 °C, its three-dimensional network structure was maintained without the closure of the pore structure by a melt-down of the membrane.