%0 Journal Article %T Synthesis of 2-Ethylhexyl 5-Bromothiophene-2-Carboxylates; Antibacterial Activities against Salmonella Typhi, Validation via Docking Studies, Pharmacokinetics, and Structural Features Determination through DFT. %A Nazeer W %A Qamar MU %A Rasool N %A Taibi M %A Salamatullah AM %J Molecules %V 29 %N 13 %D 2024 Jun 25 %M 38998957 %F 4.927 %R 10.3390/molecules29133005 %X A new class of thiophene-based molecules of 5-bromothiophene-2-carboxylic acid (1) have been synthesized in current research work. All analogs 4A-4G were synthesized with optimized conditions by coupling reactions of 2-ethylhexyl 5-bromothiophene-2-carboxylate (3) with various arylboronic acids. The results indicated that the majority of compounds showed promising effective in vitro antibacterial activity. Herein, 2-ethylhexyl-5-(p-tolyl)thiophene-2-carboxylate (4F), in particular among the synthesized analogs, showed outstanding antibacterial action (MIC value 3.125 mg/mL) against XDR Salmonella Typhi compared to ciprofloxacin and ceftriaxone. The intermolecular interaction was investigated by using a molecular docking study of thiophene derivatives 4A-4G against XDR S. Typhi. The values of the binding affinity of functionalized thiophene molecules and ciprofloxacin were compared against bacterial enzyme PDB ID: 5ztj. Therefore, 4F appears to be a promising antibacterial agent and showed the highest potential value. Density functional theory (DFT) calculations were executed to examine the electronic, structural, and spectroscopic features of the newly synthesized molecules 4A-4G.