%0 Journal Article %T Assessing the global warming potential impact of organic fertilizer strategies in rice cultivation in Sri Lanka. %A Rathnayake H %A Mizunoya T %J Environ Sci Pollut Res Int %V 31 %N 34 %D 2024 Jul 13 %M 38997601 %F 5.19 %R 10.1007/s11356-024-34348-w %X Rice is the staple food in Sri Lanka, and over 15% of the national land is allocated for rice cultivation. Greenhouse gas (GHG) emissions from rice fields account for 10% of national GHG emissions. The country has committed to reducing its emissions by 14.5% between 2010 and 2030 and achieving net zero emissions by 2060. In 2021, the country banned agro-fertilizer imports and opted for organic fertilizers, leading to a notable decrease in production and posing challenges to food security. However, the impact of adopting compost fertilizers alone remains unexplored. This study evaluated the global warming impact of two organic fertilizer strategies: switching to compost fertilizer instead of urea and applying rice straw compost instead of retaining crop residue. We applied the Denitrification and Decomposition model (DNDC 95) to rice field management data from Sri Lanka's Mahaweli H agricultural region. Simulations suggest that both strategies would increase the global warming potential of rice fields, mainly owing to elevated N2O emissions. This outweighs the mitigation benefits of avoiding crop residue retention and adding organic carbon through compost. Overall, our results point to the potential risk of shifting exclusively to compost-based fertilizers.