%0 Journal Article %T Establishing Virtual Bioequivalence and Clinically Relevant Specifications for Omeprazole Enteric-Coated Capsules by Incorporating Dissolution Data in PBPK Modeling. %A Yang R %A Lin Y %A Chen K %A Huang J %A Yang S %A Yao A %A Yang X %A Lei D %A Xiao J %A Yang G %A Pei Q %J AAPS J %V 26 %N 4 %D 2024 Jul 12 %M 38997548 %F 3.603 %R 10.1208/s12248-024-00956-0 %X Currently, Biopharmaceutics Classification System (BCS) classes I and III are the only biological exemptions of immediate-release solid oral dosage forms eligible for regulatory approval. However, through virtual bioequivalence (VBE) studies, BCS class II drugs may qualify for biological exemptions if reliable and validated modeling is used. Here, we sought to establish physiologically based pharmacokinetic (PBPK) models, in vitro-in vivo relationship (IVIVR), and VBE models for enteric-coated omeprazole capsules, to establish a clinically-relevant dissolution specification (CRDS) for screening BE and non-BE batches, and to ultimately develop evaluation criteria for generic omeprazole enteric-coated capsules. To establish omeprazole's IVIVR based on the PBPK model, we explored its in vitro dissolution conditions and then combined in vitro dissolution profile studies with in vivo clinical trials. The predicted omeprazole pharmacokinetics (PK) profiles and parameters closely matched the observed PK data. Based on the VBE results, the bioequivalence study of omeprazole enteric-coated capsules required at least 48 healthy Chinese subjects. Based on the CRDS, the capsules' in vitro dissolution should not be < 28%-54%, < 52%, or < 80% after two, three, and six hours, respectively. Failure to meet these dissolution criteria may result in non-bioequivalence. Here, PBPK modeling and IVIVR methods were used to bridge the in vitro dissolution of the drug with in vivo PK to establish the BE safety space of omeprazole enteric-coated capsules. The strategy used in this study can be applied in BE studies of other BCS II generics to obtain biological exemptions and accelerate drug development.