%0 Journal Article %T MFS-DBF: A trustworthy multichannel feature sieve and decision boundary formulation system for Obstructive Sleep Apnea detection. %A Chu R %A Wei J %A Lu W %A Dong C %A Chen Y %J Comput Biol Med %V 179 %N 0 %D 2024 Sep 11 %M 38996552 %F 6.698 %R 10.1016/j.compbiomed.2024.108842 %X The fine identification of sleep apnea events is instrumental in Obstructive Sleep Apnea (OSA) diagnosis. The development of sleep apnea event detection algorithms based on polysomnography is becoming a research hotspot in medical signal processing. In this paper, we propose an Inverse-Projection based Visualization System (IPVS) for sleep apnea event detection algorithms. The IPVS consists of a feature dimensionality reduction module and a feature reconstruction module. First, features of blood oxygen saturation and nasal airflow are extracted and used as input data for event analysis. Then, visual analysis is conducted on the feature distribution for apnea events. Next, dimensionality reduction and reconstruction methods are combined to achieve the dynamic visualization of sleep apnea event feature sets and the visual analysis of classifier decision boundaries. Moreover, the decision-making consistency is explored for various sleep apnea event detection classifiers, which provides researchers and users with an intuitive understanding of the detection algorithm. We applied the IPVS to an OSA detection algorithm with an accuracy of 84% and a diagnostic accuracy of 92% on a publicly available dataset. The experimental results show that the consistency between our visualization results and prior medical knowledge provides strong evidence for the practicality of the proposed system. For clinical practice, the IPVS can guide users to focus on samples with higher uncertainty presented by the OSA detection algorithm, reducing the workload and improving the efficiency of clinical diagnosis, which in turn increases the value of trust.