%0 Journal Article %T Responses of particulate and mineral-associated organic carbon to temperature changes and their mineral protection mechanisms: A soil translocation experiment. %A Li J %A He L %A Wang J %A Zhao X %A Chen J %A Ren C %A Wang J %A Guo Y %A Zhao F %J Sci Total Environ %V 948 %N 0 %D 2024 Oct 20 %M 38992385 %F 10.753 %R 10.1016/j.scitotenv.2024.174689 %X Mineral protection mechanisms are important in determining the response of particulate organic carbon (POC) and mineral-associated organic carbon (MAOC) to temperature changes. However, the underlying mechanisms for how POC and MAOC respond to temperature changes are remain unclear. By translocating soils across 1304 m, 1425 m and 2202 m elevation gradient in a temperate forest, simulate nine months of warming (with soil temperature change of +1.41 °C and +3.91 °C) and cooling (with soil temperature change of -1.86 °C and -4.20 °C), we found that warming translocation significantly decreased POC by an average of 10.84 %, but increased MAOC by an average of 4.25 %. Conversely, cooling translocation led to an average increase of 8.64 % in POC and 13.48 % in MAOC. Exchangeable calcium (Caexe) had a significant positive correlation with POC and MAOC during temperature changes, and Fe/Al-(hydr)oxides had no significant correlation or a significant negative correlation with POC and MAOC. Our results showed that POC was more sensitive than MAOC to temperature changes. Caexe mediated the stability of POC and MAOC under temperature changes, and Fe/Al-(hydr)oxides had no obvious protective effect on POC and MAOC. Our results support the role of mineral protection in the stabilization mechanism of POC and MAOC in response to climate change and are critical for understanding the consequences of global change on soil organic carbon (SOC) dynamics.