%0 Journal Article %T Degradation of β-lactam antibiotics by Fe(III)/HSO3- system and their quantitative structure-activity relationship. %A Chen Z %A Cai H %A Huang F %A Wang Z %A Chen Y %A Liu Z %A Xie P %J Environ Res %V 259 %N 0 %D 2024 Jul 8 %M 38986801 %F 8.431 %R 10.1016/j.envres.2024.119577 %X β-lactam antibiotics, extensively used worldwide, pose significant risks to human health and ecological safety due to their accumulation in the environment. Recent studies have demonstrated the efficacy of transition metal-activated sulfite systems, like Fe(Ⅲ)/HSO3-, in removing PPCPs from water. However, research on their capability to degrade β-lactam antibiotics remains sparse. This paper evaluates the degradation of 14 types of β-lactam antibiotics in Fe(Ⅲ)/HSO3- system and establishes a QSAR model correlating molecular descriptors with degradation rates using the MLR method. Using cefazolin as a case study, this research predicts degradation pathways through NPA charge and Fukui function analysis, corroborated by UPLC-MS product analysis. The investigation further explores the influence of variables such as HSO3- dosage, substrate concentration, Fe(Ⅲ) dosage, initial pH and the presence of common seen water matrices including humic acid and bicarbonate on the degradation efficiency. Optimal conditions for cefazolin degradation in Fe(Ⅲ)/HSO3- system were determined to be 93.3 μM HSO3-, 8.12 μM Fe(Ⅲ) and an initial pH of 3.61, under which the interaction of Fe(Ⅲ) dosage with initial pH was found to significantly affect the degradation efficiency. This study not only provides a novel degradation approach for β-lactam antibiotics but also expands the theoretical application horizon of the Fe(Ⅲ)/HSO3- system.