%0 Journal Article %T Deconvoluting and derisking QRS complex widening to improve cardiac safety profile of novel plasmepsin X antimalarials. %A Delaunois A %A Cardenas A %A de Haro T %A Gerets HHJ %A Gryshkova V %A Hebeisen S %A Korlowski C %A Laleu B %A Lowe MA %A Valentin JP %J Toxicol Sci %V 0 %N 0 %D 2024 Jul 8 %M 38976647 %F 4.109 %R 10.1093/toxsci/kfae087 %X Quinoline-related antimalarial drugs have been associated with cardiotoxicity risk, in particular QT prolongation and QRS complex widening. In collaboration with Medicines for Malaria Venture (MMV), we discovered novel plasmepsin X (PMX) inhibitors for malaria treatment. The first lead compounds tested in anesthetized guinea pigs (GP) induced profound QRS widening, although exhibiting weak inhibition of NaV1.5-mediated currents in standard patch clamp assays. To understand the mechanism(s) underlying QRS widening to identify further compounds devoid of such liability, we established a set of in vitro models including CaV1.2, NaV1.5 rate-dependence and NaV1.8 patch clamp assays, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), and Langendorff-perfused isolated GP hearts. Six compounds were tested in all models including anesthetized GP, and 8 additional compounds were tested in vitro only. All compounds tested in anesthetized GP and isolated hearts showed a similar cardiovascular profile, consisting of QRS widening, bradycardia, negative inotropy, hypotension, and for some, QT prolongation. However, a left shift of the concentration-response curves was noted from in vitro to in vivo GP data. When comparing in vitro models, there was a good consistency between decrease in sodium spike amplitude in hiPSC-CM and QRS widening in isolated hearts. Patch clamp assay results showed that the QRS widening observed with PMX inhibitors is likely multifactorial, primarily due to NaV1.8 and NaV1.5 rate-dependent sodium blockade and/or calcium channel-mediated mechanisms. In conclusion, early de-risking of QRS widening using a set of different in vitro assays allowed to identify novel PMX inhibitors with improved cardiac safety profile.