%0 Journal Article %T TGF-β1 impairs IgA class switch recombination and production in porcine Peyer's patches B cells. %A Wang C %A Zhang Y %A Lu Y %A Huang X %A Jiang H %A Chen G %A Shao Y %A Savelkoul HFJ %A Jansen CA %A Liu G %J Eur J Immunol %V 0 %N 0 %D 2024 Jul 7 %M 38973082 %F 6.688 %R 10.1002/eji.202350704 %X Secretory IgA is crucial for preventing the invasion of entero-pathogens via intestinal mucosa. While it is well-established that Transforming growth factor β1 (TGF-β1) regulates IgA production in human and mouse B cells, our previous investigation revealed different functions of TGF-β1 in IgA generation in pigs compared with humans and mice, with the underlying mechanism remaining elusive. In this study, IgM+ B cells from porcine Peyer's patches (PPs) were isolated and stimulated with recombinant porcine TGF-β1 to evaluate the effect of TGF-β1 on pigs. The results showed that antibody production from B cells of PPs was impaired by TGF-β1 ex vivo. Furthermore, TGF-β1 treatment led to a decrease in the expression of germ-line transcript αand postswitch transcript α. Moreover, we observed that TGF-β1 predominantly inhibited the phosphorylation of p38-mitogen-activated protein kinases (MAPK), confirming the involvement of the p38-MAPK pathway in porcine IgA generation and IgA class switch recombination. The application of p38-MAPK inhibitor resulted in decreased B-cell differentiation levels. Collectively, this study demonstrates that exogenous TGF-β1 restrains the production and class switch recombination of IgA antibodies by inhibiting p38-MAPK signaling in porcine PPs B cells, which may constitute a component of TGF-β1-mediated inhibition of B-cell activation.