%0 Journal Article %T The plastisphere can protect Salmonella Typhimurium from UV stress under simulated environmental conditions. %A Ormsby MJ %A Woodford L %A White HL %A Fellows R %A Quilliam RS %J Environ Pollut %V 358 %N 0 %D 2024 Jul 2 %M 38964649 %F 9.988 %R 10.1016/j.envpol.2024.124464 %X Plastic waste is found with increasing frequency in the environment, in low- and middle-income countries. Plastic pollution has increased concurrently with both economic development and rapid urbanisation, amplifying the effects of inadequate waste management. Distinct microbial communities can quickly colonise plastic surfaces in what is collectively known as the 'plastisphere'. The plastisphere can act as a reservoir for human pathogenic bacteria, including Salmonella enterica sp. (such as S. Typhimurium), which can persist for long periods, retain pathogenicity, and pose an increased public health risk. Through employing a novel mesocosm setup, we have shown here that the plastisphere provides enhanced protection against environmental pressures such as ultraviolet (UV) radiation and allows S. Typhimurium to persist at concentrations (>1 × 103 CFU/ml) capable of causing human infection, for up to 28 days. Additionally, using a Galleria Mellonella model of infection, S. Typhimurium exhibits greater pathogenicity following recovery from the UV-exposed plastisphere, suggesting that the plastisphere may select for more virulent variants. This study demonstrates the protection afforded by the plastisphere and provides further evidence of environmental plastic waste acting as a reservoir for dangerous clinical pathogens. Quantifying the role of plastic pollution in facilitating the survival, persistence, and dissemination of human pathogens is critical for a more holistic understanding of the potential public health risks associated with plastic waste.