%0 Journal Article %T A method for rapid and reliable quantification of VEGF-cell binding activity. %A Waduge P %A Kaur A %A Li W %J Biochem Biophys Res Commun %V 727 %N 0 %D 2024 Jun 27 %M 38954982 %F 3.322 %R 10.1016/j.bbrc.2024.150321 %X Vascular endothelial growth factor (VEGF) is a pleiotropic growth factor that binds a broad spectrum of cell types and regulates diverse cellular processes, including angiogenesis, growth and survival. However, it is technically difficult to quantify VEGF-cell binding activity because of reversible nature of ligand-receptor interactions. Here we used T7 bacteriophage display to quantify and compare binding activity of three human VEGF-A (hVEGF) isoforms, including hVEGF111, 165 and 206. All three isoforms bound equally well to immobilized aflibercept, a decoy VEGF receptor. hVEGF111-Phage exhibited minimal binding to immobilized heparan sulfate, whereas hVEGF206-Phage and hVEGF165-Phage had the highest and intermediate binding to heparan, respectively. In vitro studies revealed that all three isoforms bound to human umbilical vein endothelial cells (HUVECs), HEK293 epithelial and SK-N-AS neuronal cells. hVEGF111-Phage has the lowest binding activity, while hVEGF206-Phage has the highest binding. hVEGF206-Phage was the most sensitive to detect VEGF-cell binding, albeit with the highest background binding to SK-N-AS cells. These results suggest that hVEGF206-Phage is the best-suited isoform to quantify VEGF-cell binding even though VEGF165 is the most biologically active. Furthermore, this study demonstrates the utility of T7 phage display as a platform for rapid and convenient ligand-cell binding quantification with pros and cons discussed.