%0 Journal Article %T Predicting in vivo therapeutic efficacy of CelTrac1000-labeled hair follicle epidermal neural crest stem cells in models of repairing rat facial nerve defects via second near-infrared fluorescence imaging. %A Lv S %A Zhu G %A Li Q %A Zhang J %A Tang L %J Life Sci %V 352 %N 0 %D 2024 Sep 1 %M 38950644 %F 6.78 %R 10.1016/j.lfs.2024.122869 %X OBJECTIVE: To detect the therapeutic efficacy of CelTrac1000-labeled hair follicle epidermal neural crest stem cells (EPI-NCSCs) on repairing facial nerve defects by second near-infrared (NIR-II) fluorescence imaging.
METHODS: Firstly, CelTrac1000-labeled EPI-NCSCs were microinjected into the acellular nerve allografts (ANAs) to bridge a 10-mm-long gap in the buccal branch of facial nerve in adult rats. Then, Celtrac1000-labeled EPI-NCSCs were detected by NIR-II fluorescence imaging system to visualize the behavior of the transplanted cells in vivo. Additionally, the effect of the transplanted EPI-NCSCs on repairing facial nerve defect was examined.
RESULTS: Through 14 weeks of dynamic observation, the transplanted EPI-NCSCs survived in the ANAs in vivo after surgery. Meanwhile, the region of the NIR-II fluorescence signals was gradually limited to be consistent with the direction of the regenerative nerve segment. Furthermore, the results of functional and morphological analysis showed that the transplanted EPI-NCSCs could promote the recovery of facial paralysis and neural regeneration after injury.
CONCLUSIONS: Our research provides a novel way to track the transplanted cells in preclinical studies of cell therapy for facial paralysis, and demonstrates the therapeutic potential of EPI-NCSCs combined with ANAs in bridging rat facial nerve defects.