%0 Journal Article %T Construction and enhancement of built-in electric field for efficient oxygen evolution reaction. %A Wu J %A Huang A %A Hu H %A Gao X %A Chen Z %J J Colloid Interface Sci %V 674 %N 0 %D 2024 Nov 15 %M 38950466 %F 9.965 %R 10.1016/j.jcis.2024.06.168 %X The construction and regulation of built-in electric field (BIEF) are considered effective strategies for enhancing the oxygen evolution reaction (OER) performance of transition metal-based electrocatalysts. Herein, we present a strategy to regulate the electronic structure of nickel-iron layered double hydroxide (NiFe-LDH) by constructing and enhancing the BIEF induced by in-situ heterojunction transformation. This concept is demonstrated through the design and synthesis of Ag2S@S/NiFe-LDH (p-n heterojunction) and Ag@S/NiFe-LDH (Mott-Schottky heterojunction). Benefiting from the larger BIEF of Mott-Schottky heterojunction, efficient electron transfer occurs at the interface between silver (Ag) and NiFe-LDH. As a result, Ag@S/NiFe-LDH exhibits excellent OER performance, requiring only a 232 mV overpotential at 1 M KOH to achieve a current density of 100 mA cm-2, with a small Tafel slope of 73 mV dec-1, as well as excellent electrocatalytic durability. Density functional theory (DFT) calculations further verified that stronger BIEF in Mott-Schottky heterojunction enhances the electron interaction at the interfaces, reduces the energy barrier for the rate-determining step (RDS), and accelerates the OER kinetics. This work provides an effective strategy for designing catalyst with larger BIEF to enhance electrocatalytic activity.