%0 Journal Article %T Measuring Endoplasmic Reticulum Stress and Unfolded Protein Response in HIV-1 Infected T-Cells and Analyzing its Role in HIV-1 Replication. %A Tripathi A %A Dasgupta A %A Mitra D %J J Vis Exp %V 0 %N 208 %D 2024 Jun 14 %M 38949380 %F 1.424 %R 10.3791/66522 %X Viral infections can cause Endoplasmic Reticulum (ER) stress due to abnormal protein accumulation, leading to Unfolded Protein Response (UPR). Viruses have developed strategies to manipulate the host UPR, but there is a lack of detailed understanding of UPR modulation and its functional significance during HIV-1 infection in the literature. In this context, the current article describes the protocols used in our laboratory to measure ER stress levels and UPR during HIV-1 infection in T-cells and the effect of UPR on viral replication and infectivity. Thioflavin T (ThT) staining is a relatively new method used to detect ER stress in the cells by detecting protein aggregates. Here, we have illustrated the protocol for ThT staining in HIV-1 infected cells to detect and quantify ER stress. Moreover, ER stress was also detected indirectly by measuring the levels of UPR markers such as BiP, phosphorylated IRE1, PERK, and eIF2α, splicing of XBP1, cleavage of ATF6, ATF4, CHOP, and GADD34 in HIV-1 infected cells, using conventional immunoblotting and quantitative reverse transcription polymerase chain reaction (RT-PCR). We have found that the ThT-fluorescence correlates with the indicators of UPR activation. This article also demonstrates the protocols to analyze the impact of ER stress and UPR modulation on HIV-1 replication by knockdown experiments as well as the use of pharmacological molecules. The effect of UPR on HIV-1 gene expression/replication and virus production was analyzed by Luciferase reporter assays and p24 antigen capture ELISA, respectively, whereas the effect on virion infectivity was analyzed by staining of infected reporter cells. Collectively, this set of methods provides a comprehensive understanding of the Unfolded Protein Response pathways during HIV-1 infection, revealing its intricate dynamics.