%0 Journal Article %T Parameter estimation of the hyperbolic frequency-modulated bat calls using hyperbolic scale transform. %A Zhang L %A Du Q %J J Acoust Soc Am %V 156 %N 1 %D 2024 Jul 1 %M 38949290 %F 2.482 %R 10.1121/10.0026454 %X Echolocating bats are known to vary their waveforms at the phases of searching, approaching, and capturing the prey. It is meaningful to estimate the parameters of the calls for bat species identification and the technological improvements of the synthetic systems, such as radar and sonar. The type of bat calls is species-related, and many calls can be modeled as hyperbolic frequency- modulated (HFM) signals. To obtain the parameters of the HFM-modeled bat calls, a reversible integral transform, i.e., hyperbolic scale transform (HST), is proposed to transform a call into two-dimensional peaks in the "delay-scale" domain, based on which harmonic separation and parameter estimation are realized. Compared with the methods based on time-frequency analysis, the HST-based method does not need to extract the instantaneous frequency of the bat calls, only searching for peaks. The verification results show that the HST is suitable for analyzing the HFM-modeled bat calls containing multiple harmonics with a large energy difference, and the estimated parameters imply that the use of the waveforms from the searching phase to the capturing phase is beneficial to reduce the ranging bias, and the trends in parameters may be useful for bat species identification.