%0 Journal Article %T Direct RNA Sequencing of Foot-and-mouth Disease Virus Genome Using a Flongle on MinION. %A Xu L %A Berninger A %A Lakin SM %A O'Donnell V %A Pierce JL %A Pauszek SJ %A Barrette RW %A Faburay B %J Bio Protoc %V 14 %N 12 %D 2024 Jun 20 %M 38948261 暂无%R 10.21769/BioProtoc.5017 %X Foot-and-mouth disease (FMD) is a severe and extremely contagious viral disease of cloven-hoofed domestic and wild animals, which leads to serious economic losses to the livestock industry globally. FMD is caused by the FMD virus (FMDV), a positive-strand RNA virus that belongs to the genus Aphthovirus, within the family Picornaviridae. Early detection and characterization of FMDV strains are key factors to control new outbreaks and prevent the spread of the disease. Here, we describe a direct RNA sequencing method using Oxford Nanopore Technology (ONT) Flongle flow cells on MinION Mk1C (or GridION) to characterize FMDV. This is a rapid, low cost, and easily deployed point of care (POC) method for a near real-time characterization of FMDV in endemic areas or outbreak investigation sites. Key features • Saves ~35 min of the original protocol time by omitting the reverse transcription step and lowers the costs of reagents and consumables. • Replaces the GridION flow cell from the original protocol with the Flongle, which saves ~90% on the flow cell cost. • Combines the NGS benchwork with a modified version of our African swine fever virus (ASFV) fast analysis pipeline to achieve FMDV characterization within minutes. Graphical overview Schematic of direct RNA sequencing of foot-and-mouth disease virus (FMDV) process, which takes ~50 min from extracted RNA to final loading, modified from the ONT SQK-RNA002 protocol (Version: DRS_9080_v2_revO_14Aug2019).