%0 Journal Article %T Biodegradable gelatin/pectin films containing cellulose nanofibers and biguanide polymers: Characterization and application in sweet cherry packaging. %A Lou L %A Chen H %A Zhang L %J Int J Biol Macromol %V 0 %N 0 %D 2024 Jun 28 %M 38945332 %F 8.025 %R 10.1016/j.ijbiomac.2024.133530 %X To expand the utilization of gelatin and pectin derived from agricultural by-products, the composite films composed of gelatin, citrus pectin, cellulose nanofibers (CNF), and polyhexamethylene biguanide hydrochloride (PHMB) were prepared through the solvent casting method. Fourier infrared spectroscopy analysis verified the successful integration of CNF and PHMB into the gelatin-pectin matrix. The incorporation of CNF as a reinforcing agent substantially enhanced the barrier capabilities of the composite film. Moreover, the addition of PHMB, functioning as an antimicrobial agent, not only granted the film with antibacterial properties but also improved its physical characteristics and biodegradability. A water contact angle experiment revealed the film presented a certain degree of hydrophobicity. The optimal performances were attained with a composition in which CNF and PHMB constituted 8 % and 3 %, respectively, of the total weight of gelatin and pectin. As a packaging film, the composite film demonstrated its effectiveness by reducing the decay index and weight loss rate of sweet cherries during a 12-day storage period. In the soil degradation test, the composite film exhibited notable structural degradation by the 16th day. Consequently, the composite film will be used as an innovative and biodegradable packaging material to provide a sustainable solution for food packaging industries.