%0 Journal Article %T Environmental nanoplastics quantification by pyrolysis-gas chromatography-mass spectrometry in the Pearl River, China: First insights into spatiotemporal distributions, compositions, sources and risks. %A Junaid M %A Liu S %A Liao H %A Yue Q %A Wang J %J J Hazard Mater %V 476 %N 0 %D 2024 Jun 26 %M 38941826 %F 14.224 %R 10.1016/j.jhazmat.2024.135055 %X Nanoplastics (NPs, size <1000 nm) are ubiquitous plastic particles, potentially more abundant than microplastics in the environment; however, studies highlighting their distribution dynamics in freshwater are rare due to analytical limitations. Here, we investigated spatiotemporal levels of nine polymers of NPs in surface water samples (n = 30) from the full stretch of the Pearl River (sites, n = 15) using pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). Six polymers were detected, including polystyrene (PS), polyvinyl chloride (PVC), nylon/polyamide 66 (PA66), polyester (PES), poly(methyl methacrylate) (PMMA) and polyethylene (PE), where three polymers showed high detection frequencies; PS (100 % in winter and summer), followed by PVC (73 % in winter and 87 % in summer) and PA66 (53 % in winter and 67 % in summer). The spatiotemporal distribution revealed the sites related to aquaculture (AQ) and shipping (SHP) showed higher NP levels than those of human settlement (HS) and wastewater treatment plants (WWTPs) (p = 0.004), and relatively high average levels of NPs in the urban sites compared to rural sites (p = 0.04), albeit showed no obvious seasonal differences (p = 0.78). For instance, the average PS levels in the Pearl River were in the following order: AQ 411.55 µg/L > SHP 81.75 µg/L > WWTP 56.66 µg/L > HS 47.75 µg/L in summer and HS 188.1 µg/L > SHP 103.55 µg/L > AQ 74.7 µg/L > WWTP 62.1 µg/L in winter. Source apportionment showed a higher contribution through domestic plastic waste emissions among urban sites, while rural sites showed an elevated contribution via aquaculture, agriculture, and surface run-off to the NP pollution. Risk assessment revealed that NPs at SHP and AQ sites posed a higher integrated risk in terms of pollution load index (PLI) than those at WWTP and HS sites. Regarding polymer hazard index (HI), 80 % of sampling sites in summer and 60 % of sampling sites in winter posed level III polymer risk, with PVC posing the highest risk. This study provides novel insights into the seasonal contamination and polymer risks of NP in the Pearl River, which will help to regulate the production and consumption of plastics in the region. ENVIRONMENTAL IMPLICATIONS: The contamination dynamics of field nanoplastics (NPs) in freshwater resources remain little understood, mainly attributed to analytical constraints. This study aims to highlight the spatiotemporal distribution of NPs in the Pearl River among various land use types, urban-rural comparison, seasonal comparison, their compositional profiles, potential sources, interaction with environmental factors, and ecological and polymer hazard assessments of investigated polymers in the full stretch of the Pearl River from Liuxi Reservoir to the Pearl River Delta (PRD) region. This study, with a comparatively large number of samples and NP polymers, will offer novel insights into the contamination profiles of nano-sized plastic particles in one of the important freshwater riverine systems in China.