%0 Journal Article %T An efficient molten steel slag gas quenching process: Integrating carbon solidification and waste heat recovery. %A Wang S %A Zhang S %A Cheng X %A Wang Z %A Guo F %A Zhang J %J Waste Manag %V 186 %N 0 %D 2024 Sep 15 %M 38941735 %F 8.816 %R 10.1016/j.wasman.2024.06.024 %X The iron and steel-making industries have garnered significant attention in research related to low-carbon transitions and the reuse of steel slag. This industry is known for its high carbon emissions and the substantial amount of steel slag it generates. To address these challenges, a waste heat recovery process route has been developed for molten steel slag, which integrates CO2 capture and fixation as well as efficient utilization of steel slag. This process involves the use of lime kiln flue gas from the steel plant as the gas quenching agent, thereby mitigating carbon emissions and facilitating carbonation conversion of steel slag while simultaneously recovering waste heat. The established carbonation model of steel slag reveals that the insufficient diffusion of CO2 gas molecules within the product layer is the underlying mechanism hindering the carbonation performance of steel slag. This finding forms the basis for enhancing the carbonation performance of steel slag. The results of Aspen Plus simulation indicate that 1 t of steel slag (with a carbonation conversion rate of 15.169 %) can fix 55.19 kg of CO2, process 6.08 kmol of flue gas (with a carbon capture rate of 92.733 %), and recover 2.04 GJ of heat, 0.43 GJ of exergy, and 0.68 MWh of operating cost. These findings contribute to the development of sustainable and efficient solutions for steel slag management, with potential applications in the steel production industry and other relevant fields.