%0 Journal Article %T [Research progress on regulatory mechanism of renal copper homeostasis]. %A Liu YQ %A Yu C %J Sheng Li Xue Bao %V 76 %N 3 %D 2024 Jun 25 %M 38939942 暂无%X Copper is a vital trace metal element necessary for the functioning of living organisms. It serves as a co-factor or structural component in numerous enzymes, participating in crucial biological metabolic processes. Disruptions in copper homeostasis, whether inherited or acquired, such as copper overload, deficiency, or uneven distribution, can contribute to or exacerbate various diseases, including Menkes disease, Wilson's disease, neurodegenerative disorders, anemia, cardiovascular diseases, kidney diseases and cancer. Recent research has highlighted the close correlation between chronic kidney disease and intracellular copper overload. Therefore, renal cells must establish a well-organized and efficient copper regulation network to maintain intracellular copper homeostasis. This review summarizes the processes of copper uptake, intracellular trafficking, storage, and excretion in renal cells, and elucidates the underlying mechanisms involved, aiming to provide a theoretical foundation and potential therapeutic targets for the fundamental investigation and clinical management of kidney-related diseases.