%0 Journal Article %T Transcriptional genes of lysosome-associated membrane protein 2A in sciatic nerve injuries by bioinformatics. %A Sohn EJ %A Park KT %J Neuroreport %V 35 %N 12 %D 2024 Aug 7 %M 38935077 %F 1.703 %R 10.1097/WNR.0000000000002066 %X Recent studies have shown that autophagy is activated in response to nerve damage and occurs simultaneously with the initial stages of Schwann cell-mediated demyelination. Although several studies have reported that macroautophagy is involved in the peripheral nerve, the role of chaperone-mediated autophagy (CMA) has not yet been investigated in peripheral nerve injury. The present study investigates the role of CMA in the sciatic nerve. Using a mouse model of sciatic nerve injury, the authors employed immunofluorescence analysis to observe the expression of LAMP2A, a critical marker for CMA. RNA sequencing was performed to observe the transcriptional profile of Lamp2a in Schwann cells. Bioinformatics analysis was carried out to observe the hub genes associated with Lamp2a . Expression of Lamp2a , a key gene in CMA, increased following sciatic nerve injury, based on an immunofluorescence assay. To identify differentially expressed genes using Lamp2a , RNA sequence analysis was conducted using rat Schwann cells overexpressing Lamp2a . The nine hub genes ( Snrpf, Polr1d, Snip1, Aqr, Polr2h, Ssbp1, Mterf3, Adcy6 , and Sbds ) were identified using the CytoHubba plugin of Cytoscape. Functional analysis revealed that Lamp2a overexpression affected the transcription levels of genes associated with mitotic spindle organization and mRNA splicing via the spliceosome. In addition, Polr1d and Snrpf1 were downregulated throughout postnatal development but elevated following sciatic nerve injury, according to a bioinformatics study. CMA may be an integral pathway in sciatic nerve injury via mRNA splicing.