%0 Journal Article %T Defect-Rich CuZn Nanoparticles for Model Catalysis Produced by Femtosecond Laser Ablation. %A Lasemi N %A Wicht T %A Bernardi J %A Liedl G %A Rupprechter G %J ACS Appl Mater Interfaces %V 16 %N 29 %D 2024 Jul 24 %M 38934369 %F 10.383 %R 10.1021/acsami.4c07766 %X Femtosecond laser ablation of Cu0.70Zn0.30 targets in ethanol led to the formation of periodic surface nanostructures and crystalline CuZn alloy nanoparticles with defects, low-coordinated surface sites, and, controlled by the applied laser fluence, different sizes and elemental composition. The Cu/Zn ratio of the nanoparticles was determined by energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and selected area electron diffraction. The CuZn nanoparticles were about 2-3 nm in size, and Cu-rich, varying between 70 and 95%. Increasing the laser fluence from 1.6 to 3.2 J cm-2 yielded larger particles, more stacking fault defects, and repeated nanotwinning, as evident from high-resolution transmission electron microscopy, aided by (inverse) fast Fourier transform analysis. This is due to the higher plasma temperature, leading to increased random collisions/diffusion of primary nanoparticles and their incomplete ordering due to immediate solidification typical of ultrashort pulses. The femtosecond laser-synthesized often nanotwinned CuZn nanoparticles were supported on highly oriented pyrolytic graphite and applied for ethylene hydrogenation, demonstrating their promising potential as model catalysts. Nanoparticles produced at 3.2 J cm-2 exhibited lower catalytic activity than those made at 2.7 J cm-2. Presumably, agglomeration/aggregation of especially 2-3 nm sized nanoparticles, as observed by postreaction analysis, resulted in a decrease in the surface area to volume ratio and thus in the number of low-coordinated active sites.