%0 Journal Article %T Detection and Segmentation of Glioma Tumors Utilizing a UNet Convolutional Neural Network Approach with Non-Subsampled Shearlet Transform. %A M T %A S K %A Sagayam KM %A J A %J J Comput Biol %V 0 %N 0 %D 2024 Jun 27 %M 38934096 %F 1.549 %R 10.1089/cmb.2023.0339 %X The prompt and precise identification and delineation of tumor regions within glioma brain images are critical for mitigating the risks associated with this life-threatening ailment. In this study, we employ the UNet convolutional neural network (CNN) architecture for glioma tumor detection. Our proposed methodology comprises a transformation module, a feature extraction module, and a tumor segmentation module. The spatial domain representation of brain magnetic resonance imaging images undergoes decomposition into low- and high-frequency subbands via a non-subsampled shearlet transform. Leveraging the selective and directive characteristics of this transform enhances the classification efficacy of our proposed system. Shearlet features are extracted from both low- and high-frequency subbands and subsequently classified using the UNet-CNN architecture to identify tumor regions within glioma brain images. We validate our proposed glioma tumor detection methodology using publicly available datasets, namely Brain Tumor Segmentation (BRATS) 2019 and The Cancer Genome Atlas (TCGA). The mean classification rates achieved by our system are 99.1% for the BRATS 2019 dataset and 97.8% for the TCGA dataset. Furthermore, our system demonstrates notable performance metrics on the BRATS 2019 dataset, including 98.2% sensitivity, 98.7% specificity, 98.9% accuracy, 98.7% intersection over union, and 98.5% disc similarity coefficient. Similarly, on the TCGA dataset, our system achieves 97.7% sensitivity, 98.2% specificity, 98.7% accuracy, 98.6% intersection over union, and 98.4% disc similarity coefficient. Comparative analysis against state-of-the-art methods underscores the efficacy of our proposed glioma brain tumor detection approach.