%0 Journal Article %T An origin of ultraslow spreading ridges for the Yarlung-Tsangpo ophiolites. %A Liu CZ %A Wu FY %A Liu T %A Zhang C %A Zhang WQ %A Zhang ZY %A Zhang Z %A Wei W %A Lin YZ %J Fundam Res %V 2 %N 1 %D 2022 Jan %M 38933911 暂无%R 10.1016/j.fmre.2021.07.002 %X As relics of ancient ocean lithosphere, ophiolites are the most important petrological evidence for marking the sutures and also play a key role in reconstructing plate configuration. They also provide valuable windows for studying crustal accretion and mantle processes occurring at modern ocean ridges. Abundant ophiolites are distributed along the Yarlung-Tsangpo suture and represent the relics of ocean lithosphere of the Neo-Tethys. They are characterized by an incomplete litho-stratigraphy, of which the mantle section is much thicker than the crustal section. Ocean crustal rocks outcropped in the Yarlung-Tsangpo ophiolites are much thinner than normal ocean crusts (~ 7 km) or even absent. Tectonic settings from which the Yarlung-Tsangpo ophiolites originated remain highly controversial, although an origin of the supra-subduction zone is prevailing. Moreover, their incomplete litho-stratigraphy has been commonly attributed to tectonic dismemberment during the late-stage emplacement after their formation. Nevertheless, such an incompleteness resembles the ocean lithosphere generated at modern ultraslow spreading ridges, such as the Southwest Indian Ridge (SWIR). In this paper, we present several lines of evidence that support the formation of the Yarlung-Tsangpo ophiolites at ultraslow spreading ridges, during which detachment faults were developed. This suggests that the Yarlung-Tsangpo ophiolites might represent the ocean core complexes (OCC) in the Neo-Tethys Ocean. The OCC with high topography in the seafloor were clogged in the trench and preserved as ophiolites through Indo-Eurasia collision. The clogging resulted in the demise of an old subduction and a new subduction was re-initiated beneath the clogged OCC.