%0 Journal Article %T Muscle-Derived microRNAs Correlated with Thigh Lean Mass Gains during Progressive Resistance Training in Older Adults. %A O'Bryan SM %A Lavin KM %A Graham ZA %A Drummer DJ %A Tuggle SC %A Van Keuren-Jensen K %A Reiman R %A Alsop E %A Kadakia MP %A Craig MP %A Zhang J %A Bamman MM %J J Appl Physiol (1985) %V 0 %N 0 %D 2024 Jun 27 %M 38932684 暂无%R 10.1152/japplphysiol.00680.2023 %X Resistance training (RT) remains the most effective treatment for age-related declines in muscle mass. However, many older adults experience attenuated muscle hypertrophy in response to RT when compared to younger adults. This may be attributed to underlying molecular processes that are dysregulated by aging and exacerbated by improperly prescribed RT weekly volume, intensity, and/or frequency doses. MicroRNA (miRNA) are key epigenetic regulators that impact signaling pathways and protein expression within cells, are dynamic and responsive to exercise stimuli, and are often dysregulated in diseases. In this study, we used untargeted miRNA-seq to examine miRNA in skeletal muscle and serum-derived exosomes of older adults (n = 18, 11M/7F, 66±1y) who underwent 3x/wk RT for 30 weeks [e.g., high intensity 3x/wk (HHH, n = 9) or alternating high-low-high intensity (HLH, n = 9)], after a standardized four-week wash-in. Within each tissue, miRNAs were clustered into modules based on pairwise correlation using Weighted Gene Correlation Network Analysis (WGCNA). Modules were tested for association with the magnitude of RT-induced thigh lean mass (TLM) change (as measured by DXA). While no modules were unique to training dose, we identified miRNA modules in skeletal muscle associated with TLM gains irrespective of exercise dose. Using miRNA-target interactions, we analyzed key miRNAs in significant modules for their potential regulatory involvement in biological pathways. Findings point toward potential miRNAs that may be informative biomarkers and could also be evaluated as potential therapeutic targets as an adjuvant to RT in order to maximize skeletal muscle mass accrual in older adults.