%0 Journal Article %T Vitamin K2 Supplementation in Hospitalised COVID-19 Patients: A Randomised Controlled Trial. %A Visser MPJ %A Dofferhoff ASM %A van den Ouweland JMW %A de Jong PA %A Zanen P %A van Daal H %A Theeuwen EB %A Kramers C %A Janssen R %A Walk J %J J Clin Med %V 13 %N 12 %D 2024 Jun 14 %M 38930004 %F 4.964 %R 10.3390/jcm13123476 %X Background: In observational studies, high levels of desphospho-uncarboxylated matrix gla protein (dp-ucMGP) that result from vitamin K deficiency were consistently associated with poor clinical outcomes during COVID-19. Vitamin K-activated matrix gla protein (MGP) is required to protect against elastic fibre degradation, and a deficiency may contribute to pathology. However, intervention trials assessing the effects of vitamin K supplementation in COVID-19 are lacking. Methods: This is a single-centre, phase 2, double-blind, randomised, placebo-controlled trial investigating the effects of vitamin K2 supplementation in 40 hospitalised COVID-19 patients requiring supplemental oxygen. Individuals were randomly assigned in a 1:1 ratio to receive 999 mcg of vitamin K2-menaquinone-7 (MK-7)-or a placebo daily until discharge or for a maximum of 14 days. Dp-ucMGP, the rate of elastic fibre degradation quantified by desmosine, and hepatic vitamin K status quantified by PIVKA-II were measured. Grade 3 and 4 adverse events were collected daily. As an exploratory objective, circulating vitamin K2 levels were measured. Results: Vitamin K2 was well tolerated and did not increase the number of adverse events. A linear mixed model analysis showed that dp-ucMGP and PIVKA-II decreased significantly in subjects that received supplementation compared to the controls (p = 0.008 and p = 0.0017, respectively), reflecting improved vitamin K status. The decrease in dp-ucMGP correlated with higher plasma MK-7 levels (p = 0.015). No significant effect on desmosine was found (p = 0.545). Conclusions: These results demonstrate that vitamin K2 supplementation during COVID-19 is safe and decreases dp-ucMGP. However, the current dose of vitamin K2 failed to show a protective effect against elastic fibre degradation.