%0 Journal Article %T Complete chloroplast genomes of eight Delphinium taxa (Ranunculaceae) endemic to Xinjiang, China: insights into genome structure, comparative analysis, and phylogenetic relationships. %A Song C %A Zhu J %A Li H %J BMC Plant Biol %V 24 %N 1 %D 2024 Jun 26 %M 38926811 %F 5.26 %R 10.1186/s12870-024-05279-y %X BACKGROUND: Delphinium L. represents a taxonomically intricate genus of significant phylogenetic and economic importance in Ranunculaceae. Despite the existence of few chloroplast genome datasets, a comprehensive understanding of genome structures and selective pressures within the genus remains unknown. Furthermore, several taxa in this genus are exclusively found in Xinjiang, China, a region renowned for its distribution and diversity of Chinese and Central Asian Delphinium species. Therefore, investigating the features of chloroplast genomes in this area will provide valuable insights into the evolutionary processes and phylogenetic relationships of the genus.
RESULTS: In this study, the eight newly completed chloroplast genomes are examined, ranging in length from 153,979 bp to 154,284 bp. Alongside these, analysing six previously reported taxa re-annotated in Delphinium, 111 unique genes are identified across all samples. Genome structure, distributions of simple sequence repeats and short dispersed repeats, as well as gene content are similar among these Delphinium taxa. Nine hypervariable intergenic spacers and protein coding regions, including ndhF-trnL(TAG), rpl16-intron, rpl33, rps15, rps18, trnK(TTT)-trnQ(TTG), trnP(TGG)-psaJ, trnT(GGT)-psbD and ycf1, are identified among 13 perennial Delphinium. Selective pressure and codon usage bias of all the plastid genes are performed within 14 Delphinium taxa. Phylogenetic analysis based on 14 Delphinium plastomes, alongside two Aconitum (Ranunculaceae) species serving as outgroup taxa, reveals the monophyletic nature of Delphinium. Our findings further discern Delphinium into two distinct clades: perennial species (clade I) and annual species (clade II). In addition, compared with the nrDNA ITS topology, cytological data and morphological characters, D. mollifolium and D. maackianum showed potential involvement in hybridization or polyploidization processes. Excluding these two species, the perennial Delphinium (clade I) exhibits a stronger consistency with the morphology-based system that utilized seed morphology.
CONCLUSIONS: This study represents the first comprehensive analysis of plastomic variations among Delphinium taxa, based on the examination of 14 complete plastomes. The chloroplast genome structure of Delphinium is similar to other angiosperms and possesses the typical quadripartite structure with the conserved genome arrangement and gene features. In addition, the variation of non-coding regions is larger than coding regions of the chloroplast genome. Through DNA sequence divergence across Delphinium plastomes and subsequent phylogenomic analyses ndhF-trnL(TAG) and ycf1 are identified as promising molecular markers. These highly variable loci held significant potential for future phylogenetic and phylogeographic studies on Delphinium. Our phylogenomic analyses based on the whole plastomes, concatenation of 132 unique intergenic spacer regions, concatenation of 77 unique protein-coding genes and nrDNA ITS, all support the monophyly of Delphinium and perennial taxa clusters together into one clade within this genus. These findings provide crucial data for systematic, phylogenomic and evolutionary research in the genus for future studies.