%0 Journal Article %T Molecular basis for transposase activation by a dedicated AAA+ ATPase. %A de la Gándara Á %A Spínola-Amilibia M %A Araújo-Bazán L %A Núñez-Ramírez R %A Berger JM %A Arias-Palomo E %J Nature %V 630 %N 8018 %D 2024 Jun %M 38926614 %F 69.504 %R 10.1038/s41586-024-07550-6 %X Transposases drive chromosomal rearrangements and the dissemination of drug-resistance genes and toxins1-3. Although some transposases act alone, many rely on dedicated AAA+ ATPase subunits that regulate site selectivity and catalytic function through poorly understood mechanisms. Using IS21 as a model transposase system, we show how an ATPase regulator uses nucleotide-controlled assembly and DNA deformation to enable structure-based site selectivity, transposase recruitment, and activation and integration. Solution and cryogenic electron microscopy studies show that the IstB ATPase self-assembles into an autoinhibited pentamer of dimers that tightly curves target DNA into a half-coil. Two of these decamers dimerize, which stabilizes the target nucleic acid into a kinked S-shaped configuration that engages the IstA transposase at the interface between the two IstB oligomers to form an approximately 1 MDa transpososome complex. Specific interactions stimulate regulator ATPase activity and trigger a large conformational change on the transposase that positions the catalytic site to perform DNA strand transfer. These studies help explain how AAA+ ATPase regulators-which are used by classical transposition systems such as Tn7, Mu and CRISPR-associated elements-can remodel their substrate DNA and cognate transposases to promote function.