%0 Journal Article %T Fluorogenic Aptamer-Based Hybridization Chain Reaction for Signal-Amplified Imaging of Apurinic/Apyrimidinic Endonuclease 1 in Living Cells. %A Liu M %A Tan Y %A Zhou C %A Fu Z %A Huang R %A Li J %A Li L %J Biosensors (Basel) %V 14 %N 6 %D 2024 May 27 %M 38920578 %F 5.743 %R 10.3390/bios14060274 %X A fluorogenic aptamer (FA)-based hybridization chain reaction (HCR) could provide a sensitive and label-free signal amplification method for imaging molecules in living cells. However, existing FA-HCR methods usually face some problems, such as a complicated design and significant background leakage, which greatly limit their application. Herein, we developed an FA-centered HCR (FAC-HCR) method based on a remote toehold-mediated strand displacement reaction. Compared to traditional HCRs mediated by four hairpin probes (HPs) and two HPs, the FAC-HCR displayed significantly decreased background leakage and improved sensitivity. Furthermore, the FAC-HCR was used to test a non-nucleic acid target, apurinic/apyrimidinic endonuclease 1 (APE1), an important BER-involved endonuclease. The fluorescence analysis results confirmed that FAC-HCR can reach a detection limit of 0.1174 U/mL. By using the two HPs for FAC-HCR with polyetherimide-based nanoparticles, the activity of APE1 in living cells can be imaged. In summary, this study could provide a new idea to design an FA-based HCR and improve the performance of HCRs in live cell imaging.