%0 Journal Article %T Development and characterization of a portable electrochemical aptasensor for IsdA protein and Staphylococcus aureus detection. %A Soleimani S %A Bruce-Tagoe TA %A Ullah N %A Rippy MG %A Spratt HG %A Danquah MK %J Anal Bioanal Chem %V 0 %N 0 %D 2024 Jun 25 %M 38916796 %F 4.478 %R 10.1007/s00216-024-05410-w %X Staphylococcus aureus (S. aureus) is recognized as one of the most common causes of gastroenteritis worldwide. This pathogen is a major foodborne pathogen that can cause many different types of various infections, from minor skin infections to lethal blood infectious diseases. Iron-regulated surface determinant protein A (IsdA) is an important protein on the S. aureus surface. It is responsible for iron scavenging via interaction with hemoglobin, haptoglobin, and hemoglobin-haptoglobin complexes. This study develops a portable aptasensor for IsdA and S. aureus detection using aptamer-modified gold nanoparticles (AuNPs) integrated into screen-printed carbon electrodes (SPCEs). The electrode system was made of three parts, including a carbon counter electrode, an AuNPs/carbon working electrode, and a silver reference electrode. The aptamer by Au-S bonding was conjugated on the electrode surface to create the aptasensor platform. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were utilized to investigate the binding interactions between the aptasensor and the IsdA protein. CV studies showed a linear correlation between varying S. aureus concentrations within the range of 101 to 106 CFU/mL, resulting in a limit of detection (LOD) of 0.2 CFU/mL. The results demonstrated strong reproducibility, selectivity, and sensitivity of the aptasensor for enhanced detection of IsdA, along with about 93% performance stability after 30 days. The capability of the aptasensor to directly detect S. aureus via the IsdA surface protein binding was further investigated in a food matrix. Overall, the aptasensor device showed the potential for rapid detection of S. aureus, serving as a robust approach to developing real-time aptasensors to identify an extensive range of targets of foodborne pathogens and beyond.