%0 Journal Article %T Molecular Endotypes of Idiopathic Pulmonary Fibrosis: A Latent Class Analysis of Two Multicenter Observational Cohorts. %A Maddali MV %A Moore AR %A Sinha P %A Newton CA %A Kim JS %A Adegunsoye A %A Ma SF %A Strek ME %A Chen CH %A Linderholm AL %A Zemans RL %A Moore BB %A Wolters PJ %A Martinez FJ %A Rogers AJ %A Raj R %A Noth I %A Oldham JM %J Am J Respir Crit Care Med %V 210 %N 4 %D 2024 Aug 15 %M 38913573 %F 30.528 %R 10.1164/rccm.202402-0339OC %X Rationale: Idiopathic pulmonary fibrosis (IPF) causes irreversible fibrosis of the lung parenchyma. Although antifibrotic therapy can slow IPF progression, treatment response is variable. There exists a critical need to develop a precision medicine approach to IPF. Objectives: To identify and validate biologically driven molecular endotypes of IPF. Methods: Latent class analysis (LCA) was independently performed in prospectively recruited discovery (n = 875) and validation (n = 347) cohorts. Twenty-five plasma biomarkers associated with fibrogenesis served as class-defining variables. The association between molecular endotype and 4-year transplant-free survival was tested using multivariable Cox regression adjusted for baseline confounders. Endotype-dependent differential treatment response to future antifibrotic exposure was then assessed in a pooled cohort of patients naive to antifibrotic therapy at the time of biomarker measurement (n = 555). Measurements and Main Results: LCA independently identified two latent classes in both cohorts (P < 0.0001). WFDC2 (WAP four-disulfide core domain protein 2) was the most important determinant of class membership across cohorts. Membership in class 2 was characterized by higher biomarker concentrations and a higher risk of death or transplant (discovery, hazard ratio [HR], 2.02; 95% confidence interval [CI], 1.64-2.48; P < 0.001; validation, HR, 1.95; 95% CI, 1.34-2.82; P < 0.001). In pooled analysis, significant heterogeneity in treatment effect was observed between endotypes (P = 0.030 for interaction), with a favorable antifibrotic response in class 2 (HR, 0.64; 95% CI, 0.45-0.93; P = 0.018) but not in class 1 (HR, 1.19; 95% CI, 0.77-1.84; P = 0.422). Conclusions: In this multicohort study, we identified two novel molecular endotypes of IPF with divergent clinical outcomes and responses to antifibrotic therapy. Pending further validation, these endotypes could enable a precision medicine approach for future IPF clinical trials.