%0 Journal Article %T Gastroretentive fibrous dosage forms for prolonged delivery of sparingly-soluble tyrosine kinase inhibitors. Part 1: Dosage form design, and models of expansion, post-expansion mechanical strength, and drug release. %A Blaesi AH %A Saka N %J Int J Pharm %V 0 %N 0 %D 2024 Jun 21 %M 38909925 %F 6.51 %R 10.1016/j.ijpharm.2024.124360 %X At present, the efficacy and safety of many sparingly-soluble tyrosine kinase inhibitors (TKIs) delivered by the prevalent oral dosage forms are compromised by excessive fluctuations in the drug concentration in blood. To mitigate this limitation, in this four-part study gastroretentive fibrous dosage forms that deliver drug into the gastric fluid (and into the blood) at a controlled rate for prolonged time are presented. The dosage form comprises a cross-ply structure of expandable, water-absorbing, high-molecular-weight hydroxypropyl methylcellulose (HPMC)-based fibers coated with a strengthening, enteric excipient. The intervening spaces between the coated fibers are solid annuli of drug particles, and low-molecular-weight HPMC and enteric excipients. The central regions of the annuli are open channels. In this part, models are developed for dosage form expansion, post-expansion mechanical strength, and drug release. The models suggest that upon immersing in a dissolution fluid, the fluid percolates the open channels, diffuses into the annuli and the coated fibers, and the dosage form expands. The expansion rate is inversely proportional, and the post-expansion mechanical strength proportional to the thickness of the strengthening coating. Drug particles are released from the annuli as the surrounding excipient dissolves. The drug release rate is proportional to the concentration of low-molecular-weight HPMC at the annulus/dissolution fluid interface. The dosage forms can be readily designed for expansion in a few hours, formation of a high-strength viscoelastic mass, and drug release at a constant rate over a day.