%0 Journal Article %T Determining the accuracy and suitability of common analytical techniques for sophorolipid biosurfactants. %A Ingham B %A Sung R %A Kay P %A Hollywood K %A Wongsirichot P %A Veitch A %A Winterburn J %J J Ind Microbiol Biotechnol %V 51 %N 0 %D 2024 Jan 9 %M 38906848 %F 4.258 %R 10.1093/jimb/kuae021 %X To determine the performance of a sophorolipid biosurfactant production process, it is important to have accurate and specific analytical techniques in place. Among the most popular are the anthrone assay, gravimetric quantification (hexane:ethyl acetate extraction), and high-performance liquid chromatography (HPLC). The choice of analytical tool varies depending on cost, availability, and ease of use; however, these techniques have never been compared directly against one another. In this work, 75 fermentation broths with varying product/substrate concentrations were comprehensively tested with the 3 techniques and compared. HPLC-ultraviolet detection (198 nm) was capable of quantifying C18:1 subterminal hydroxyl diacetylated lactonic sophorolipid down to a lower limit of 0.3 g/L with low variability (<3.21%). Gravimetric quantification of the broths following liquid:liquid extraction with hexane and ethyl acetate showed some linearity (R2 = .658) when compared to HPLC but could not quantify lower than 11.06 g/L, even when no sophorolipids were detected in the sample, highlighting the non-specificity of the method to co-extract non-sophorolipid components in the final gravimetric measure. The anthrone assay showed no linearity (R2 = .129) and was found to cross-react with media components (rapeseed oil, corn steep liquor, glucose), leading to consistent overestimation of sophorolipid concentration. The appearance of poor biomass separation during sample preparation with centrifugation was noted and resolved with a novel sample preparation method with pure ethanol. Extensive analysis and comparisons of the most common sophorolipid quantification techniques are explored and the limitations/advantages are highlighted. The findings provide a guide for scientists to make an informed decision on the suitable quantification tool that meets their needs, exploring all aspects of the analysis process from harvest, sample preparation, and analysis.