%0 Journal Article %T AXIN1 mutations in nonsyndromic craniosynostosis. %A Timberlake AT %A Hemal K %A Gustafson JA %A Hao LT %A Valenzuela I %A Slavotinek A %A Cunningham ML %A Kahle KT %A Lifton RP %A Persing JA %J J Neurosurg Pediatr %V 0 %N 0 %D 2024 Jun 21 %M 38905707 %F 2.713 %R 10.3171/2024.5.PEDS24115 %X OBJECTIVE: Occurring once in every 2000 live births, craniosynostosis (CS) is the most frequent cranial birth defect. Although the genetic etiologies of syndromic CS cases are well defined, the genetic cause of most nonsyndromic cases remains unknown.
METHODS: The authors analyzed exome or RNA sequencing data from 876 children with nonsyndromic CS, including 291 case-parent trios and 585 additional probands. The authors also utilized the GeneMatcher platform and the Gabriella Miller Kids First genome sequencing project to identify additional CS patients with AXIN1 mutations.
RESULTS: The authors describe 11 patients with nonsyndromic CS harboring rare, damaging mutations in AXIN1, an inhibitor of Wnt signaling. AXIN1 regulates signaling upstream of key mediators of osteoblast differentiation. Three of the 6 mutations identified in trios occurred de novo in the proband, while 3 were transmitted from unaffected parents. Patients with nonsyndromic CS were highly enriched for mutations in AXIN1 compared to both expectation (p = 0.0008) and exome sequencing data from > 76,000 healthy controls (p = 2.3 × 10-6), surpassing the thresholds for genome-wide significance.
CONCLUSIONS: These findings describe the first phenotype associated with mutations in AXIN1, with mutations identified in approximately 1% of nonsyndromic CS cases. The results strengthen the existing link between Wnt signaling and maintenance of cranial suture patency and have implications for genetic testing in families with CS.