%0 Journal Article %T Analysis of highly polar anionic pesticides in food of plant and animal origin by ion chromatography and tandem mass spectrometry with emphasis on addressing adverse effects caused by matrix co-extractives. %A Schäfer AK %A Vetter W %A Anastassiades M %J Anal Bioanal Chem %V 0 %N 0 %D 2024 Jun 19 %M 38896239 %F 4.478 %R 10.1007/s00216-024-05389-4 %X Residues of various highly polar pesticides and their metabolites are commonly found in numerous food products. Some of these compounds, such as glyphosate, are not only used in large amounts in agriculture, but are also controversially discussed in public. Here, we present a method, employing ion chromatography (IC) coupled to tandem mass spectrometry (IC-MS/MS), for the analyses of glyphosate, aminomethyl phosphonic acid (AMPA), N-acetyl-glyphosate (NAGly), fosetyl, and 10 further highly polar pesticides and metabolites in various plant and animal matrices following a minimal sample preparation by means of the QuPPe method. Thorough investigations showed that an AS19 column enabled the analysis of all 14 compounds within 30 min. The best sensitivity could be obtained with the make-up solvent acetonitrile being admixed to the mobile phase at a 1:2 flow rate ratio. Matrix effects were thoroughly studied in terms of ion suppression and retention time shifts. Conductivity detection was used to monitor elution profiles of matrix co-extractives in comparison with matrix effect profiles obtained by continuous post-column infusion of a mix with 13 highly polar pesticides and metabolites. These tests indicated that a fivefold dilution of QuPPe extracts was suitable for the routine analysis of samples for MRL-conformity, as it considerably reduced matrix effects maintaining sufficient sensitivity and high recovery rates in eight different commodities. The suitability of the final method for its application in routine analysis was verified by the analysis of >130 samples containing incurred residues where the results were compared with two existing LC-MS/MS methods.